If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x=70
We move all terms to the left:
2x^2+x-(70)=0
a = 2; b = 1; c = -70;
Δ = b2-4ac
Δ = 12-4·2·(-70)
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{561}}{2*2}=\frac{-1-\sqrt{561}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{561}}{2*2}=\frac{-1+\sqrt{561}}{4} $
| 8·0.3=k | | 2(x+2)+3x-3=x+16 | | 0.01x^2=5 | | 54x-26-6x=13+48x-39 | | 5–2(x+6)=14 | | 36x^2-478x-2464=0 | | 10(3x-1)=5(4x-4) | | 0.75x^2-3x=5 | | 21 r−3=3(4−23r) | | ½x=4 | | 7x-24=24 | | 6n-9n+5n=10n | | (4x^2+3x+6)+(7x^2+8x)=0 | | 9m=m+24 | | 5d-1=-12 | | -3x+4(5)=8 | | 7(5x+3)+8(2-3x)=103 | | 18/45=2/x | | x/6.4=5/8 | | 2/x-7=-19/3 | | 15f=345 | | 10=n-45 | | 30x-48=30x-48 | | X2-2x+1=45 | | X=3(4x-2)+8 | | 12+5(3+x)-3x=47 | | 7x+4=24+2x | | 3x+99=605 | | 1=-3/4(-5)+b | | 5x+180=555 | | 0.14/0.07=x/1.5 | | -n/0.09=2.79 |